Homepage ParrentName Computer Engineering
Computer Engineering

Communication Efficient Federated Learning for Wireless Networks

PDF Version
(0 reviews)
$5

1 people are viewing this right now

Useable discount codes:

25% Off
APPLY
  • Description
  • Customer Reviews
  • Return Policies
Communication Efficient Federated Learning for Wireless Networks

This book provides a comprehensive study of Federated Learning (FL) over wireless networks. It consists of three main parts: (a) Fundamentals and preliminaries of FL, (b) analysis and optimization of FL over wireless networks, and (c) applications of wireless FL for Internet-of-Things systems. In particular, in the first part, the authors provide a detailed overview on widely-studied FL framework. In the second part of this book, the authors comprehensively discuss three key wireless techniques including wireless resource management, quantization, and over-the-air computation to support the deployment of FL over realistic wireless networks. It also presents several solutions based on optimization theory, graph theory and machine learning to optimize the performance of FL over wireless networks. In the third part of this book, the authors introduce the use of wireless FL algorithms for autonomous vehicle control and mobile edge computing optimization. Machine learning and data-driven approaches have recently received considerable attention as key enablers for next-generation intelligent networks. Currently, most existing learning solutions for wireless networks rely on centralizing the training and inference processes by uploading data generated at edge devices to data centers. However, such a centralized paradigm may lead to privacy leakage, violate the latency constraints of mobile applications, or may be infeasible due to limited bandwidth or power constraints of edge devices. To address these issues, distributing machine learning at the network edge provides a promising solution, where edge devices collaboratively train a shared model using real-time generated mobile data. The avoidance of data uploading to a central server not only helps preserve privacy but also reduces network traffic congestion as well as communication cost. Federated learning (FL) is one of most important distributed learning algorithms. In particular, FL enables devices to train a shared machine learning model while keeping data locally. However, in FL, training machine learning models requires communication between wireless devices and edge servers over wireless links. Therefore, wireless impairments such as noise, interference, and uncertainties among wireless channel states will significantly affect the training process and performance of FL. For example, transmission delay can significantly impact the convergence time of FL algorithms. In consequence, it is necessary to optimize wireless network performance for the implementation of FL algorithms. This book targets researchers and advanced level students in computer science and electrical engineering. Professionals working in signal processing and machine learning will also buy this book.

Looking for a high-quality, original digital edition of Communication Efficient Federated Learning for Wireless Networks ? This official electronic version is published by Springer and offers a seamless reading experience, perfect for professionals, students, and enthusiasts in Computer Engineering.
Unlike EPUB files, this is the authentic digital edition with complete formatting, images, and original content as intended by the author .
Enjoy the convenience of digital reading without compromising on quality. Order Communication Efficient Federated Learning for Wireless Networks today and get instant access to this essential book!

0 Comments

Review Title
Review
Return Policies

By purchasing from our platform, you agree to the following terms and conditions regarding refunds, returns, and wallet credit.

Refund & Return Policy
  • Due to the digital nature of our products, all sales are final, and refunds are generally not available after purchase.
  • If you experience any technical issues with your digital book that prevent access, please contact our support team for assistance or replacement.
  • Refund requests will be reviewed on a case-by-case basis, and if approved, the refund will be credited to your wallet instead of the original payment method.
Wallet Credit & Bonus Rewards
  • As part of our loyalty program, 20% of your purchase amount will be credited to your wallet for future purchases.
  • Wallet credit is non-transferable and can only be used within our platform.
  • The credited amount will be applied automatically to your next eligible purchase.

By completing your purchase, you acknowledge and accept these policies. For any inquiries, feel free to contact our support team.

Categories