Homepage ParrentName Computer Engineering
Computer Engineering

Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications

PDF Version
(0 reviews)
$5

1 people are viewing this right now

Useable discount codes:

25% Off
APPLY
  • Description
  • Customer Reviews
  • Return Policies
Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications

This book focuses in detail on data science and data analysis and emphasizes the importance of data engineering and data management in the design of big data applications. The author uses patterns discovered in a collection of big data applications to provide design principles for hypothesis generation, integrating big data processing and management, machine learning and data mining techniques. The book proposes and explains innovative principles for interpreting hypotheses by integrating micro-explanations (those based on the explanation of analytical models and individual decisions within them) with macro-explanations (those based on applied processes and model generation). Practical case studies are used to demonstrate how hypothesis-generation and -interpretation technologies work. These are based on “social infrastructure” applications like in-bound tourism, disaster management, lunar and planetary exploration, and treatment of infectious diseases. The novel methods and technologies proposed in Hypothesis Generation and Interpretation are supported by the incorporation of historical perspectives on science and an emphasis on the origin and development of the ideas behind their design principles and patterns. Academic investigators and practitioners working on the further development and application of hypothesis generation and interpretation in big data computing, with backgrounds in data science and engineering, or the study of problem solving and scientific methods or who employ those ideas in fields like machine learning will find this book of considerable interest.

Looking for a high-quality, original digital edition of Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications ? This official electronic version is published by Springer and offers a seamless reading experience, perfect for professionals, students, and enthusiasts in Computer Engineering.
Unlike EPUB files, this is the authentic digital edition with complete formatting, images, and original content as intended by the author .
Enjoy the convenience of digital reading without compromising on quality. Order Hypothesis Generation and Interpretation: Design Principles and Patterns for Big Data Applications today and get instant access to this essential book!

0 Comments

Review Title
Review
Return Policies

By purchasing from our platform, you agree to the following terms and conditions regarding refunds, returns, and wallet credit.

Refund & Return Policy
  • Due to the digital nature of our products, all sales are final, and refunds are generally not available after purchase.
  • If you experience any technical issues with your digital book that prevent access, please contact our support team for assistance or replacement.
  • Refund requests will be reviewed on a case-by-case basis, and if approved, the refund will be credited to your wallet instead of the original payment method.
Wallet Credit & Bonus Rewards
  • As part of our loyalty program, 20% of your purchase amount will be credited to your wallet for future purchases.
  • Wallet credit is non-transferable and can only be used within our platform.
  • The credited amount will be applied automatically to your next eligible purchase.

By completing your purchase, you acknowledge and accept these policies. For any inquiries, feel free to contact our support team.

Categories