Homepage ParrentName Computer Engineering
Computer Engineering

Session-Based Recommender Systems Using Deep Learning

PDF Version
(0 reviews)
$5

1 people are viewing this right now

Useable discount codes:

25% Off
APPLY
  • Description
  • Customer Reviews
  • Return Policies
Session-Based Recommender Systems Using Deep Learning

This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied. The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary. This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems.

Looking for a high-quality, original digital edition of Session-Based Recommender Systems Using Deep Learning ? This official electronic version is published by Springer and offers a seamless reading experience, perfect for professionals, students, and enthusiasts in Computer Engineering.
Unlike EPUB files, this is the authentic digital edition with complete formatting, images, and original content as intended by the author ,.
Enjoy the convenience of digital reading without compromising on quality. Order Session-Based Recommender Systems Using Deep Learning today and get instant access to this essential book!

0 Comments

Review Title
Review
Return Policies

By purchasing from our platform, you agree to the following terms and conditions regarding refunds, returns, and wallet credit.

Refund & Return Policy
  • Due to the digital nature of our products, all sales are final, and refunds are generally not available after purchase.
  • If you experience any technical issues with your digital book that prevent access, please contact our support team for assistance or replacement.
  • Refund requests will be reviewed on a case-by-case basis, and if approved, the refund will be credited to your wallet instead of the original payment method.
Wallet Credit & Bonus Rewards
  • As part of our loyalty program, 20% of your purchase amount will be credited to your wallet for future purchases.
  • Wallet credit is non-transferable and can only be used within our platform.
  • The credited amount will be applied automatically to your next eligible purchase.

By completing your purchase, you acknowledge and accept these policies. For any inquiries, feel free to contact our support team.

Categories