Homepage ParrentName Computer Engineering
Computer Engineering

Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications

PDF Version
(0 reviews)
$5

1 people are viewing this right now

Useable discount codes:

25% Off
APPLY
  • Description
  • Customer Reviews
  • Return Policies
Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications

FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.

Looking for a high-quality, original digital edition of Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications ? This official electronic version is published by Wiley and offers a seamless reading experience, perfect for professionals, students, and enthusiasts in Computer Engineering.
Unlike EPUB files, this is the authentic digital edition with complete formatting, images, and original content as intended by the author .
Enjoy the convenience of digital reading without compromising on quality. Order Fundamentals and Methods of Machine and Deep Learning: Algorithms, Tools, and Applications today and get instant access to this essential book!

0 Comments

Review Title
Review
Return Policies

By purchasing from our platform, you agree to the following terms and conditions regarding refunds, returns, and wallet credit.

Refund & Return Policy
  • Due to the digital nature of our products, all sales are final, and refunds are generally not available after purchase.
  • If you experience any technical issues with your digital book that prevent access, please contact our support team for assistance or replacement.
  • Refund requests will be reviewed on a case-by-case basis, and if approved, the refund will be credited to your wallet instead of the original payment method.
Wallet Credit & Bonus Rewards
  • As part of our loyalty program, 20% of your purchase amount will be credited to your wallet for future purchases.
  • Wallet credit is non-transferable and can only be used within our platform.
  • The credited amount will be applied automatically to your next eligible purchase.

By completing your purchase, you acknowledge and accept these policies. For any inquiries, feel free to contact our support team.

Categories