Energy

Machine Learning and Its Application to Reacting Flows: ML and Combustion

PDF Version
(0 reviews)
$10

10 people are viewing this right now

Useable discount codes:

25% Off
APPLY
  • ISBN:

    9783031162473

  • Author/Authors:

  • Publisher:

    Springer

  • Categories:

    Energy

  • Description
  • Customer Reviews
  • Return Policies
Machine Learning and Its Application to Reacting Flows: ML and Combustion

This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation.

Looking for a high-quality, original digital edition of Machine Learning and Its Application to Reacting Flows: ML and Combustion ? This official electronic version is published by Springer and offers a seamless reading experience, perfect for professionals, students, and enthusiasts in Energy.
Unlike EPUB files, this is the authentic digital edition with complete formatting, images, and original content as intended by the author .
Enjoy the convenience of digital reading without compromising on quality. Order Machine Learning and Its Application to Reacting Flows: ML and Combustion today and get instant access to this essential book!

0 Comments

Review Title
Review
Return Policies

By purchasing from our platform, you agree to the following terms and conditions regarding refunds, returns, and wallet credit.

Refund & Return Policy
  • Due to the digital nature of our products, all sales are final, and refunds are generally not available after purchase.
  • If you experience any technical issues with your digital book that prevent access, please contact our support team for assistance or replacement.
  • Refund requests will be reviewed on a case-by-case basis, and if approved, the refund will be credited to your wallet instead of the original payment method.
Wallet Credit & Bonus Rewards
  • As part of our loyalty program, 20% of your purchase amount will be credited to your wallet for future purchases.
  • Wallet credit is non-transferable and can only be used within our platform.
  • The credited amount will be applied automatically to your next eligible purchase.

By completing your purchase, you acknowledge and accept these policies. For any inquiries, feel free to contact our support team.

Categories